Assignment 7

This homework is due Friday March 18.

There are total 42 points in this assignment. 38 points is considered 100%. If you go over 38 points, you will get over 100% for this homework (but not over 115%) and it will count towards your course grade.

Collaboration is welcome. If you do collaborate, make sure to write/type your own paper *and give credit to your collaborators in your pledge*. Your solutions should exhibit your work and contain full proofs. Bare answers will not earn you much.

This assignment covers Sections 5.1–5.3 of Textbook.

- (1) [5pt] Express e^z in the form u + iv for the following z.
 - (a) $-\frac{\pi}{3}$. (b) $\frac{1}{2} - i\frac{\pi}{4}$. (c) -4 + 5i. (d) $\frac{\pi}{3} - 2i$. (e) $-1 + i\frac{3\pi}{2}$.
- (2) [2pt] Use the fact that e^{z^2} is analytic to show that $e^{x^2-y^2} \sin 2xy$ is harmonic.
- (3) [10pt] Show the following concerning the exponential map.
 - (a) The image of the first quadrant $\{(x, y) : x > 0, y > 0\}$ is the region $\{w : |w| > 1\}$.
 - (b) If a is a real constant, the horizontal strip $\{(x, y) : a < y \le a + 2\pi\}$ is mapped one-to-one and onto all nonzero complex numbers.
 - (c) The image of the vertical line segment $\{(x, y) : x = 2, y = t\}$, where $\frac{\pi}{6} < t < \frac{7\pi}{6}$, is half a circle.
 - (d) The image of the horizontal ray $\{(x, y) : x > 0, y = \frac{\pi}{3}\}$ is a ray.
- (4) [5pt] Find all values of the following. (Reminder: $\log z$ is a multivalued function, $\log z$ is its principal branch.)
 - (a) $\text{Log}(ie^2)$, (d) $\log(-3)$, (b) $\text{Log}(\sqrt{3}-i)$, (e) $\log(-\sqrt{2}+i\sqrt{2})$, (c) $\text{Log}((1+i)^4)$,
- (5) [2pt] Give an example of specific values of z_1, z_2 such that $\operatorname{Log}\left(\frac{z_1}{z_2}\right) \neq \operatorname{Log}(z_1) \operatorname{Log}(z_2).$
- (6) [5pt] Solve the following equations (i.e. find all possible values of z).

(a) $\text{Log}(z) = 1 - i\frac{\pi}{4}$.	(c) $\exp(iz) = -1$.
(b) $\text{Log}(z-1) = i\frac{\pi}{2}$.	(d) $\exp(z+1) = i$.

- (7) [3pt] Find the principal value of
 - (a) 4^i .
 - (b) $(-1)^{\frac{1}{\pi}}$.
 - (c) $(1+i\sqrt{3})^{\frac{i}{2}}$.
- (8) [5pt] Find all values of the expressions below. In each case determine if there are infinitely many or finitely many values.
 - (a) $(-i)^{i}$. (b) $(-1)^{\sqrt{2}}$. (c) $(-1)^{\frac{3}{4}}$. (d) $(1+i)^{2-i}$.
- (9) [5pt] For $z = re^{i\theta} \neq 0$, show that for r > 0 and $-\pi < \theta \leq \pi$, the principal branch of the function
 - (a) z^i is given by $z^i = e^{-\theta} (\cos(\ln r) + i \sin(\ln r)).$
 - (b) z^{α} (with real α) is given by $z^{\alpha} = r^{\alpha}(\cos \alpha \theta + i \sin \alpha \theta)$.
 - (*Hint:* Use the definition of the power function.)